Notice
This website is undergoing a refresh. Please pardon some errors while we complete this process.
Conservative estimates suggest that the human population will surpass 9 billion by 2050. The actual figure could be closer to 10 billion. Either way, this will require a massive boost in food production to feed that many people. Crops that are more adaptable to varying climate conditions and less vulnerable to pathogens and other pests will be significant pieces of the puzzle.
“We can’t control the fact that the population is increasing or that there is a finite amount of agricultural land — land that is decreasing in quality overall,” says Day. “When you’re talking about feeding 9 billion or 10 billion people by 2050 with crops that won’t get wiped out by pests and diseases, we don’t have the luxury of feeding everyone from a backyard garden. Some people have fears about large-scale industrial agriculture and GMOs, and that’s why we should also be looking at things from the viewpoint of sustainability.”
Cholani Weebadde, an assistant professor in the MSU Department of Plant, Soil and Microbial Sciences and associate director of the World Technology Access Program, spends much of her time assisting developing countries with capacity building. A plant breeder and international agriculture expert, Weebadde is uniquely suited to speak about GMOs with political and agency leaders.
“In my opinion, it’s important that countries have functional regulatory systems in place so they can make science-based, informed decisions on commercializing GM crops and products so farmers have access to the best technologies,” says Weebadde. “Having transparent systems in place with evaluations conducted using a risk-based approach is important for countries and their ability to say yes or no to the technologies.”
Pests and diseases aren’t the only concerns driving the development and use of genetically modified crops. Climate change also is making farming more challenging worldwide. According to Weebadde, some food crops are naturally ill-equipped to handle the added environmental stresses, ranging from not enough rain to unyielding cold spells.
“Since we are dealing with narrow genetic and germplasm bases for most of our staple food crops, we may have to reach out to genetic engineering technologies and genes from other sources to improve them further,” she says. “Otherwise, we may run out of options.”
Adapted from a story by Cameron Rudolph published in Futures, a magazine produced twice a year by Michigan State University AgBioResearch. Read past issues of Futures at www.futuresmagazine.msu.edu.